矩阵

A=[a11000a22000ann]n×nA= \left[\begin{array}{c} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{array}\right]_{n×n}

A=[a11a12a1n0a22a2n00ann]n×nA= \left[\begin{array}{c} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{array}\right]_{n×n}

A=[a1100a21a220an1an2ann]n×nA= \left[\begin{array}{c} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{array}\right]_{n×n}

A=[1a12a1n01a2n001]n×nA= \left[\begin{array}{c} 1 & a_{12} & \cdots & a_{1n} \\ 0 & 1 & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{array}\right]_{n×n}

A=[100a2110an1an21]n×nA= \left[\begin{array}{c} 1 & 0 & \cdots & 0 \\ a_{21} & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & 1 \end{array}\right]_{n×n}

行列式

eg:2阶子式
A=[a23a24a43a44]A = \left[\begin{array}{c} & & & \\ &a_{23} &a_{24} & \\ & & & \\ & a_{43} & a_{44} & \\ & & & \end{array}\right]

向量

线性方程组

特征值

λEA=λ3(1+5+2)λ2+(1245+1302+5612)λA|λE - A| = λ^3 - (1+5+2)λ^2 + (\left|\begin{array}{c} 1 & 2 \\ 4 & 5 \end{array}\right| + \left|\begin{array}{c} 1 & 3 \\ 0 & 2 \end{array}\right| + \left|\begin{array}{c} 5& 6 \\ 1 & 2 \end{array}\right|)λ-|A|